

What is phase mixing?

- Phase mixing is the process by which a build-up in ∇_{\perp} occurs due to $\nabla_{\perp} v_A$.
- Introduced by Heyvaerts and Priest (1983).
- *v* & *b* shear ⇒ KHI & tearing instability ⇒ turbulence (possibly).
- We consider just laminar phase mixing.

Aims

- Provide an argument that the damping rate (γ) of <u>laminar</u>, phase mixed Alfvén waves is <u>too small</u> to heat coronal loops.
- Leakage though the TR reduces γ by ≈ 2 orders of magnitude.

Model

- Model loops as straight.
- Footpoint, sinusoidal driver.
- Linear Alfvén waves.
- Model in 2.5D.
- Partial reflection.

Source: TRACE, 171 Å, Characterstic temperature $\approx 6 \times 10^5 \text{K}$

Analytic solution

• Heyvaerts and Priest (1983) gives the soln in an open field.

$$u = u_0 \exp\left[-\left(\frac{s}{l_{ph}}\right)^3\right] \exp\left[i\omega\left(t - \frac{s}{v_A}\right)\right]$$
$$l_{ph} = \left(\frac{(v+\eta)\omega^2}{6v_A^5}(\nabla_\perp v_A)^2\right)^{-1/3}$$

• Steady-state soln with partial reflection.

$$u = u_0 \exp[i\omega t] \sum_{k=0}^{\infty} (-1)^k R^k \exp\left[-\left(\frac{s_k}{l_{ph}}\right)^3\right] \exp\left[-i\omega \frac{s_k}{v_A}\right]$$
$$s_k = (-1)^k s + (2k+1)l$$

Numerical vs Analytic

Damping rate (γ)

Leakage

- Waves can leak through the TR.
- We use the reflection coefficient (R) estimated analytically in Hollweg (1984).
- Hydrostatic chromosphere.
- Uniform corona.
- We model the TR as a discontinuity.

Leakage vs dissipative timescale

• Heyvaerts and Priest (1983) give a value for $\nu + \eta \approx 1$ (for 10 G field).

- Although $\nu \propto \frac{1}{B_0^2}$.
- Leakage timescale < phase mixing dissipative timescale.

(Timescale)⁻¹ (s^{-1})

Damping rate (γ) vs leakage

- Leakage reduces γ.
- Caused by the e^{-s³} nature of phase mixing.
- For $-\log R \ll L \, l_{ph}^{-1}$:

$$\gamma \approx \left(\frac{4}{3} \, \frac{(\nu + \eta)\omega^2}{v_A^2} \, (\nabla_\perp \, v_A)^2 \,\right)^{1/3}.$$

• For $-\log R \gg L l_{ph}^{-1}$:

$$\gamma \approx 2 \frac{\eta \omega^2 L^2 (\nabla_\perp v_A)^2}{v_A^4 \log(R)^2}.$$

Damping rate for a resonant field line

Damping rate (γ) vs frequency

- Damping rate is largest at resonance.
- Error mainly caused by e^{-s^3} nature of phase mixing.

Leakage vs no leakage

 \longrightarrow Leakage reduces damping rate by \sim 2 orders of magnitude

Summary

- Require $\gamma \approx 10^{-1} \text{ s}^{-1}$.
- $R = 1 \Longrightarrow \gamma$ insufficient by approximately 3 orders of magnitude.
- R given by Hollweg (1984) $\Rightarrow \gamma$ insufficient by approximately 5 orders of magnitude (for $\nu + \eta = 1 \text{ m}^2 \text{s}^{-1}$).
- \Rightarrow Laminar phase mixing is unlikely to be a viable heating mechanism.
- However, this has not been proven for all parameters.

This project has received funding from the Science and Technology Facilities Council (UK) through the consolidated grant ST/N000609/1 and the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 647214).

References

Heyvaerts, J. and Priest, E., 1983. Coronal heating by phase-mixed shear Alfvén waves. *Astronomy and Astrophysics*, *117*, pp.220-234.

Hollweg, J.V., 1984. Resonances of coronal loops. *The Astrophysical Journal*, *277*, pp.392-403.

McIntosh, S.W., De Pontieu, B., Carlsson, M., Hansteen, V., Boerner, P. and Goossens, M., 2011. Alfvénic waves with sufficient energy to power the quiet solar corona and fast solar wind. *Nature*, *475*(7357), p.477.

Priest E. Magnetohydrodynamics of the Sun. Cambridge University Press; 2014 Apr 7.