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Introduction

• Our aim is to investigate laminar phase mixing of Alfvén waves as a 

standalone heating mechanism in coronal loops.

• We calculate an upper bound for the damping rate and compare with 

the heating requirement of the corona. 

• We define the damping rate, 𝛾, as

𝛾 =
〈Steady-state heating rate〉

〈2 × Steady-state kinetic wave energy⟩
.

Model

• Driver of the form:

𝒖 = 𝑢0 

𝑛=1

𝑁

𝐴𝑛 𝑛𝜔1
−𝛼/2 sin( 𝑛𝜔1𝑡 + 𝜙𝑛) ෝ𝒚,

𝜔1 is the fundamental angular frequency of the resonant field line,

𝜙𝑛 is a random phase.

• Steady-state wave energy power spectrum with slope -𝛼 (Fig. 2). 
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Damping rate

Conclusion

• Using a coronal heating rate, 𝐻𝑐 ≈ 10−5 Wm−3 and observed 

amplitudes in the quiet sun ≈ 20 km s−1 (McIntosh et al. 2011)

⟹ we require 𝛾 ≈ 10−1 s−1.

• Figure 3 shows 𝛾 is too small by 3 orders of magnitude.

• If our estimate is an upper bound ⟹ laminar phase mixing is not 

a viable standalone heating mechanism in coronal loops.

• Laminar phase mixing may be significant in other setups, for 

example near null points where the Alfvén speed is small, and the 

cross-field viscosity is stronger.
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(Heyvaerts and Priest 1983)

• Use 𝜈 + 𝜂 = 1m2 s−1, 𝑣𝐴 = 1Mm s−1, ∇⊥𝑣𝐴 = 1 s−1 and 𝐿 =
100Mm⟹ fundamental frequency of 𝑓1 = 5 × 10−3 Hz.

• Exciting higher harmonics gives a larger damping rate

• Figures 2 and 3 are independent of the phases 𝜙𝑛.

Fig. 3. Damping rate, 𝛾, of the resonant field line as a function of the number of 

excited harmonics.

Fig. 2. Normalised power spectrum of the steady-state kinetic wave energy of the 

resonant field line.

Upper bound?

• We find that:

▪ Leakage of waves though the transition region reduces the 

damping rate.

▪ The damping rate increases with time but converges to a 

maximum as the system approaches steady-state.

▪ The damping rate is largest at resonance.

• Cargill et al. (2016) showed that the thermodynamic response due to 

the heating reduces the density gradients, which reduces 𝛾.

• Prokopyszyn et al. (2019) showed that nonlinearities have a 

negligible impact on 𝛾 for Τ𝑢 𝑣𝐴 < 0.1 .

• Relaxing the 2.5D assumption and linear approximation could lead 

to turbulence which will increase 𝛾, however, we focus here on 

laminar phase mixing.

⟹ Fig. 3 is an upper bound for 𝛾.

Fig. 1. Diagram of our model.


