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Abstract

Over the last 25 years there have been a number of sophisticated
computer models of the putative phenomenon known as the Solar
Magnetic Avalanche. A magnetic avalanche is a cumulative process in
which magnetic energy is released in a region of space, which in turn
causes nearby magnetic field to release energy as well, and so on. Many
of these simulations, while computationally cheap, rely on somewhat
arbitrary rules to govern their behaviour. This year Professor Alan Hood
of the University of St Andrews, led a paper (Hood et al., 2016) detailing
the results of an MHD (magnetohydrodynamics) simulation grounded
very firmly in physics. The downside of such an approach is the high
computational demand of the simulation, meaning that the number of
avalanches that could be investigated, was orders of magnitude below
the number required to compare with previous Cellular Automata (see
below) results and with actual solar observations. This summer project
analyses the results of the aforementioned paper and tries to produce a
simple simulation which is both based on physics and computationally
cheap. A simulation that can achieve both of these aims would contribute
to solving the ”Coronal Heating Problem”.

Cellular Automation Simulation

Starting in the early 90’s Magnetic Avalanches have been simulated
using Cellular Automata simulations. Cellular automation is a computing
term and refers to a collection of ”coloured” cells on a grid of specified
shapes (see Figure 1) that evolves through a number of discrete time
steps according to a set of rules based on the states of neighbouring
cells. The simulation offered in Lu et al. (1993) can be seen as simulating
a square table on which sand grains are dropped one at a time, leading
to the build-up of a more or less conical pile. The sand pile steepens until
its slope reaches a critical angle, beyond which further addition of sand
rapidly leads to avalanches sweeping sand down the pile, so that the
angle of the slope remains close to its critical value. When the sand pile
reaches this state, it is in a state of Self-Organised Criticality.

Unfortunately, Cellular Automata simulations have yet to match
observations in certain key aspects (Charbonneau et al., 2001). It is
believed that if a simulation with less assumptions and arbitrary rules can
be produced, then results observed in the corona can be reproduced.

Figure 1: This figure shows an example of a lattice similar to the lattice used in Lu et al. (1993) that has
reached a pix-elated conical pile and is also in a state of self-organised criticality. The darker the square,
the stronger the field at that point.

Simulation Offered in Hood et al. (2016)

This year a simulation grounded firmly in solar physics with no arbitrary
rules was offered in Hood et al. (2016). This simulation has an initial
configuration of 23 flux tubes and these are illustrated in Figure 2. The
centre node has been twisted so tightly that it is unstable, this is why it
expands and triggers the avalanche. This simulation provides a
phenomenal amount of detail, the drawback of this is the high
computational demand. Only one avalanche could be carried out, which is
orders of magnitude below the number required to reach self organised
criticality.

Figure 2: This figure was taken from Hood et al. (2016) and shows the initial configuration of all 23 nodes.

Figure 3: This figure was taken from Hood et al. (2016) and shows the simualtion in action. The more red a
region is the more positive current there is, the more blue a region is the more negative the current in that
region.

Simulation Offered in the Summer Project

The aim of this project was to find a compromise between the simulation
offered in Lu et al. (1993) and Hood et al. (2016). More specifically, the
aims were to produce a simulation that could: 1. Reproduce results of the
simulation in Hood et al. (2016). 2. Be computationally cheap. 3. Have as
few arbitrary rules as possible and instead be governed by rules grounded
in solar physics.

Figure 4: This figure shows two snapshots of the simulation created in the summer project at times t=4 and
t=128. Each circle represents the cross section of a twisted flux tubes. The more green a node is the less
twisted it is and the more blue a node is the more twisted it is.K. V. Tam et al.: Coronal heating in multiple magnetic threads

Fig. 8. Case 3: the field line plots at time: a) t = 60 (top left); b) t = 80 (top right); c) t = 160 (bottom left) and d) t = 300 (bottom right). The
yellow and red field lines are drawn from (x, y, z) = (−2, 0, 10) and (x, y, z) = (−2, 0,−10) while the blue and green field lines are drawn from
(x, y, z) = (2, 0, 10) and (x, y, z) = (2, 0,−10).
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Figure 5: This Figure taken from Tam et al. (2015) illustrates two phenomena: unstable flux tubes and
converging flux tubes. Figure 2 (a): (top left) t = 60 The flux tube on the left is stable while the one on the
right is so tightly twisted that it is unstable. Figure 2 (b): (top right) t = 80 The unstable flux tube on the right
is expanding. Figure 2 (c): (bottom left) t = 160 The two flux tubes are converging. Figure 2 (d): (bottom
right) t = 300 The two flux tubes have finished converging and have now formed one larger less twisted flux
tube.

Summer Project Simulation Continued

The simulation produced in this summer project, was produced after
close examination of the simulation in Hood et al. (2016). There are two
main phenomena the code simulates: first, is unstable flux tubes and the
second is converging flux tubes, both of these are illustrated in Figure 5.

1 PROGRAM avalanche
2
3 aa= initial_conditions !set aa to its initial values
4
5 ! first resolve unstable groups
6 DO i=1,ng ! iterate over all groups
7 ii= group_node_numbers !ii array gives node numbers of
8 !all the nodes in group i
9 IF (SUM(λii(:)) > λc) THEN ! group is unstable

10 Λii(:) = Λinew = Λii(1)
√

1− Λ2
ii(1)/7 ! assign group new values

11 ωii(:) = σ1ωii(1)

12 Rii(:) =
√
ωii(1)/(πΛii(1))

13 END IF
14 END DO
15
16 ! second resolve convergences between groups
17 DO i=1,ng

18 DO j=i+1,ng ! iterate over all distinct group pairs
19 ii= group_node_numbers !gives nodes of group i
20 jj= group_node_numbers !gives nodes of group j
21 IF (SUM(λii(:) + λojj(:)) .OR. SUM(λjj(:) + λoii(:))> λc) THEN
22 gjj(:) = i !merge the two distinct groups into one
23 ii = [ii, jj] ! concatenate ii with new nodes
24 Λii(:) = (ΛinewR

2
ii(1) + ΛjnewR

2
jj(1))/(R

2
ii(1) +R2

jj(1))
25 ωii(:) = σ2ωii(:)
26 ωjj(:) = σ2ωjj(:)

27 Rii(:) =
√
ωii(1)/(πΛii(1))

28 Xii(:) = Xii(1) + (Xjj(1) −Xii(1))ωjj(1)/ωii(1)/(1 + ωjj(1)/ωii(1))
29 END IF
30 END DO
31 END DO
32
33 ! third move nodes accordingly
34 DO i=1,n ! iterate over all nodes
35 IF (|Xi − xi| < |v1|) THEN !move full amount
36 xi = xi + v1
37 ELSE !move less than full velocity
38 xi = Xi

39 END IF
40 IF (Ri − ri < v2) THEN ! expand radius by full amount
41 ri = ri + v2
42 ELSE ! expand radius by less than full amount
43 ri = Ri

44 END IF
45 END DO
46
47 ! fourth check if avalanche has finished
48 IF ( avalanche_finished ) THEN
49 !start next iteration by adding new flux tubes to
50 ! random coordinates centred on the origin
51 ELSE
52 !Go back to line 17
53 END IF
54
55 END PROGRAM avalanche
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Coronal Heating Problem

The coronal heating problem relates to the question of why the
temperature of the Sun’s corona is millions of Kelvin higher than that of
the surface. The average temperature of the upper boundary of the solar
photosphere is 5785 K (Aschwanden, 2005). The average temperature of
the corona, which is located above the photosphere, has a temperature
exceeding 1,000,000 K (Aschwanden, 2005). The physical explanation
for the high temperature in the solar corona remains one of the
outstanding unsolved problems for solar physicists. It is widely accepted
that the heating mechanism is closely linked to the strong magnetic field
in the corona, however, the details are still uncertain. Perhaps, magnetic
avalanches are the dominating heating mechanism?

Figure 6:Total solar eclipse as seen from Mount Carbine, Queensland, November 13, 2012. The
photosphere is covered however the corona can still be seen.
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