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Aims

 Study continuous, footpoint driven Alfvén waves in
coronal-like plasma.

* Analyse wave leakage through the transition
region.

e Show that an upper limit for the gradients is
reached.

* Calculate and present this upper limit.



Background

* Many proposed mechanisms for coronal heating, e.g.
turbulence, phase mixing, nanoflares etc..

e |t is difficult to show which mechanisms are dominant
(if any).
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Background

e Can we quantify an upper bound for the heating
provided by phase mixing?

* Estimate a parameter space where phase mixing is
negligible.

* Upper bound is easier to find than an accurate
value.

Source: TRACE, 171 A,
Characterstic temperature = 6 X 10°K



Phase mixing

‘VlvA =TV, u, Vlb’

|
This process = phase
mixing.

* In ideal MHD phase
mixing is only responsible
for changesto V, not V.

* Ohmic heating rate of an
Alfvén wave is given by
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Our model of a coronal loop

Chromosphere

* Model loop in 2.5D, but consider only
one field line.

° VHUA = 0.
e V,vy #0.
|deal MHD.
Linear waves.

There is an invariant direction.
Consider only Alfvén waves.

Corona

Footpoint driver =% = =—

T

Partial reflection

Chromosphere



Structure

* Estimate wave reflection/transmission coefficient.

* Experiment 1:
= Full reflection, sinusoidal driver.

* Experiment 2:
= Partial reflection, sinusoidal driver.

* Experiment 3:
= Partial reflection, broadband driver.

 Conclusions



The transition region is approximately a discontinuity
in comparison to the wavelength of observed waves
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Estimating the energy reflection
coefficient (Rg)

e Use LARE2D (but only 1 10 prrrrrrrrr POKOM
cell wide). -
e Use density values based bl ]
on VAL. 10° - _
* Send in an Alfven pulse
10-10 | —

and measure how much
energy reflects and

: O.OHIIO.SHHLO 1.5
transmits. s (M)



Calculating the energy reflection
coefficient (Rg)
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Energy reflection coefficient (Rg)

Grid size Rg Grid size Rg
(As) (Mm) (A =20 Mm) (As) (Mm) (A =200 Mm)
(P = 50 5s) (P = 500 s)
~ 5.9 x 1072 ~ 0.843 ~4.6x 1071 ~ 0.975
~ 2.9 x 1072 ~ 0.838 ~2.3x1071 ~ 0.975
~ 1.5 x 1072 ~ 0.841 ~1.1x1071 ~ 0.974
~ 0.7 X 1072 ~ 0.839 ~ 0.6 x 1071 ~ 0.974




Analytic check of Rg

* Rr of the configuration on

the right is p(s)y
R, = (\/ﬁ—\/ﬂ)z

B \Vpi+vpz/) -

e For 22 = 100 this gives

P1
R; = 0.77.

* This is less than Ry for
numerical experiments as D,

P2 =

expected.

. For% = 1000 this gives
1
R; = 0.88.



Experiment 1/3

Chromosphere

* Full reflection (R = 1). ‘

* Sinusoidal driver. Full reflection

Corona

Footpoint driver =
Chromosphere



Analytic solution

* Solve the wave equation.
0%u 2 0%u
9tz A gs?
e Domain: —[ < s <
* Conditions:
" Driver: u(—I[,t) = sin(wt)
» Require a factor R < 1 to reflect at s = +1.
 Solve using d'Alembert’s formula.



Analytic solution

Heaviside step function
U= ’,?zo(—l)kRkH?@k)/sin(wek),

Hk — ¢ _( 1)]{ S 2k+1

L,

VA

th‘ <€ Floor function
m —



Numerical solution

* Obtained using LARE2D.

* Linear driver imposed on the left boundary of the
form:
u = 10"* sin(wt).

* Solid boundary conditions otherwise.



Numeric vs Analytic
Non-resonant driver

Driver
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Solution for a resonant driver

Amplitude, u, at loop apex

* The natural frequencies are Resonant, w=o.
given by’ 30 § IIIIIIIIIIIIIIIII | IIIIIIIII | IIIIIIIIIIIIIIIIII g
v 20 £
w, =n-=2 .
L 10 £
0F :
*Ifw = w,,n = od.d integer, 10_
then the solution is
Uy 20 E E
uzit_COS(a)t)- 302 IIIIIIII ‘ IIIIIIIII | IIIIIIIII | IIIIIIIII JIIIIHIIE
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Solution near resonance

Amplitude, u, at loop apex
Nearly resonant, w=0.9w,

10 lIlIlIlIIlIIIIIIIIIIITIII|IIIIII||l|HlllIIIIII|I
i — Full solution |
B -—-Approximate [
5 - -~

* If w % w,, n = odd integer °F
then the solution is, | -
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Time
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Solution away from resonance
Amplitude, u, at loop apex

Non—resonant, low frequency, v <w, Non—resonant, high frequency, o>,
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Experiment 2/3

Chromosphere

e Parital reflection (R < 1). v\

* Sinusoidal driver. Partial reflection

Corona

Footpoint driver = =seeeedhnnnan
Chromosphere



Analytic solution

 Same as before, except now R < 1.

u =Y (=1 R*H(8,) sin(wby),

s (. ki_2k+1
Hk =1 ( 1) VA V4 l)
- th




Time 4

Numerical solution

e Difficult to implement in LARE.

* We need an arbitrary amplitude to reflect.
* Decided it would be easier to make a linear upwind

code.

* Stencil diagram:

LARE

,n+1

I—1,n

L,n 1+ 1,n

I —1,n

(Vg > 1)
,n+1

,n

Upwind

(v < 1)
,n+1

,n

I+ 1,n

» Space



Numerical solution

* Upwind code solves for the Elsasser variables,

zt =u+0b.
 Elsasser variables satlsfy the advection equation,
0z+ - 0zt _0
v —
ot 4 oas

* Hence, z™ travels in the negative direction and z~
travels in the positive direction.



Numerical solution

* To generate a driver, z~ is imposed on the left
boundary.

* A factor z* = Rz~ is generated at the right
boundary and z~= Rz ™ at the left boundary.

* This simulates partial reflection.



Numeric vs Analytic

Resonant driver

uatt= 1.5
Steady-state amplitude => 4
—— Analytic
31 ---- Numeric
2 i
* R=3/4.
1 1 S S [P e g r——

e Maximum /\
amplitude 0
reached despite | < X/

being ideal and
resonant. _> |




Why does the system reach a
steady-state?

* Intuitive reason:

= A wave losing energy through leakage is in some sense
equivalent to a wave losing energy via diffusion.

" Hence, a steady-state is reached for the same reason it
does if the wave is damped.

e Mathematical reason:

" The solution can be rewritten as a geometric series,
which converges to a finite value for R < 1.



Writing the solution as a
geometric series

u =Y (—1)*R*H(6,) sin(wby),
Gk — ¢ — ( 1)]( S 2k+1 l,

tv
m{A

let s = 0 and replace sin() with exp(i),

vA

2iwl

k
u = el@t-t/vayint(—1)k (R e_”A) +(—1)mR{’”‘H(9m)ei“’9m,

let t — oo, = 0,t > oo
plwt

Geometric series U(O, t) = 1+Re2lwl/vy"
(converges for R < 1).




Steady-state amplitude at the loop apex

« Amplitude(u) = = )
\/1+2R cos(4v%i)+R2
« Amplitude(b) = . ,
\/1—2R cos(4v%:>+R2
. m tvy L
e Convergence timescale: R"™ = exp( —‘ In R) =T ~ :
L v4 |In R|

Amplitude (u) Amplitude(b)
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Does V, u reach a steady-state?

* Yes (for R < 1).

* Same is true for Vu.

* Amplitude of
discontinuity initially
grows linearly then
decays exponentially.
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Amplitude(Vu) vs Amplitude(V,u)

* Key point: Vu (and Vb) tends towards a steady-
state.

* Since the plasma is ideal, phase mixing is solely
responsible for the build-up in V.

* If we canrelate V,uto Vju e.g.
VJ_'U, — CV”u

* Then we know phase mixing has enhanced the
gradients by a factor C.



Amplitude(Vu) vs Amplitude(V,u)

At steady-state

, 1—Rexp(—i($—l’
A
Amp (V u) = v_VJ_UA ol
4 1+Rexp(—i—
Vg
. wL
1—R 1—Rexp(—1a)
— < T <
1+R 1+Rexp(—iw—)
Y -

Driven at even harmonic.

Amp(V”u).

p—

+
J

p—

—_—"

~

Driven at odd harmonic.



Amplitude(Vu) vs Amplitude(V,u)
At steady-state

10~ *Amp(Vju) < Amp (V,u) < 10* Amp(V)u).

e |f:
e [ =100 Mm,
* v, =400 kms™1,
e V,v, =100 km s~ Mm™},
+ R =9/10.

* Using a broadband driver could help reduce this range.



Experiment 3/3

Chromosphere

e Parital reflection (R < 1). v\

* Broadband driver. Partial reflection

Corona

Footpoint driver = =seeeedhnnnan
Chromosphere



2.0

1.5

1.0

0.5

0.8-

What is a broadband driver?

* A broadband driver is a driver which excites a range

of frequencies.

u = sin(wt)

f

| FFT(Sinusoidal driver)|
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Analytic solution

* We have a solution for a sinusoidal driver, at steady
state:

u(0,t) = Amp(w, R) sin(wt).
e Qur driver now has the form:

N
Udriv (t) = Z fn_aSin(wnt + ¢n) -
n=1

e So the solution is:

N
u(0,t) = z fry “Amp(w,,, R) sin(w,t + ¢,,).
n=1

Gives y/power spectrum.



Why no numerical solution?

* Not yet had time.

* We have checked the analytic formula for
sinusoidal drivers.

* Linear problem = solution is a superposition of
the sinusoidal driver experiments.



Formula check

|
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The driver

Gives ower spectrum.
* Takes the form, VP P

N
Udriv (t) — z fﬁa Sin(wnt + ¢n) -
n=1

\

N =1000. Can take any value.
o — ©n — —4
In - nl10™" Hz

* ¢, is a random phase with a uniform probability
distribution over the interval [0,27].



The driver

e Each term is multiplied by a

—
factor f,; . o 1000 T _
— R QN P-mode frequency]

cq = [O..l, 0.5,0.9] BN quency|

depending on the oo,

experiment. s
e Since u < VP we cansee oo

that0 < a < 1.
* Results are mainly l |

i i i PR | L L L T
0.0001 0.0010 0.0100
Frequency (Hz)

insensitive to our choice of
Q.



Experiment 3 - summary

_ , ] Chromosphere
* Drive with a broadband driver, =y

with a random phase. \

Partial reflection

* Repeat 1000 times and present
the average.

* Use the analytic steady-state Corona
formulas.
* L = 200Mm.
1

vy, =1Mms"™

Footpc)lnt driver s L
Chromosphere



R=09 a=0.5

Random experiment

u = u(t)
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R=09 a=0.5

Average over 1000 experiments
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R=09a=05
Average over 1000 experiments
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Values are = normally distributed

Random experiment, R = 0.9, = 0.5

Histogram(u)
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Standard deviation of Vju vs. V, u

* STD = standard deviation.
* Table of the average STD(V,u)/STD(V,ju):

a=0.1 a = 0.5 a =09 Analytic
R =0.5 2.11 2.16 2.18 3
R =09 14.0 13.7 13.8 19
R =0.99 191 192 195 199
R =0.999 1930 1950 1980 1999

* Proposed analytic formula (not proven):

STD(V, u) ~

l

vA

1+R

VJ_UA E STD(V”u)




Simplifications

* We have a formula relating V, u and V,u.

 Assumed ideal MHD, therefore, our relation can be
seen as an upper bound for V, u.

* However, these simplifications were also made:
" linear waves.
= Consider only strict Alfvén waves.
" VHUA = 0.

e Future work could look at at the effects of
modifying these simplifications.



Application of V, u and Vu relation
X-point field

* Goal from previous work:
Look at phase mixing due
to variations in field line
length.

* Formula could help
deduce a parameter
space where the phase
mixing is negligible.

N\
7

Partial
reflection

Driver



Application of V, u and Vu relation
X-point field

e Wave equation for ideal
Alfvén waves in a potential

field:
o’u 1 ,. 2
— =—1(By-V) u
at=  upy /// NN

* Convert to a field aligned
coordinate system to get
the 1D wave equation:
2 2
0“u . UZ 0“u Partial
ot2 A0 052 reflection

Driver



Application of V, u and Vu relation
X-point field

e Calculated for a sinusoidal

driver that:
1-Re p(—zé‘“l) ’
Amp(V,u) = o p(_zif)z) Amp(V)u) /// &
VA

* Not confirmed numerically.

* Equation is not dependent

on normalising constants. partial
reflection

Driver



Summary

* We have derived a formula which links V, and V.

* In ideal MHD, phase mixing is only responsible for
enhancing V.

* Therefore, it is hoped that our relation can be seen
as an upper bound for the enhancement in heating
due to phase mixing.



Future work

* Can we prove a formula for the relationship
between STD(V}u) and STD(V, u)?

* Investigate the effects of switching to:

= A nonlinear system.
= 3D.
= Other modes of oscillation.



Thank you for listening

Questions?



