Resonant absorption in an oblique magnetic field

Alex Prokopyszyn, Alan Hood, Andrew Wright

Aim

- Study resonant absorption in an oblique field
- Methods
- Analytic and numerical

Results

- Steep boundary layers form
- $\bullet \rightarrow$ limited effect on the rate of absorption

What is resonant absorption?

- Process where:
 - Magnetoacoustic waves → standing Alfvén waves

• $\omega_f = \omega_n$

Magnetoacoustic wave Alfvén frequency frequency

• Analogous to Barton's pendulum —

What is resonant absorption?

Barton's pendulum

Resonant absorption

Why study resonant absorption?

- Coronal seismology
- Explains why waves damp so fast (Ruderman and Roberts, 2002)
- \rightarrow short length-scales \implies heating

Video captured using TRACE at 171 Å

Why study an oblique field?

- Solid wall + oblique field → boundary layers
- Implications for coronal seismology are not obvious
- Solid wall + oblique field has not been studied in detail in a RA context

Our model

• Background quantities:

•
$$B_0 = B_0 \widehat{B}_0$$

• $v_A(x) = v_{A0}(1 - x/L_z)$

- Perturbations:
 - $\boldsymbol{u}(x, y, z, t) = u_x \widehat{\boldsymbol{x}} + u_\perp \widehat{\perp}$ • $\boldsymbol{b}(x, y, z, t) = b_x \widehat{\boldsymbol{x}} + b_\perp \widehat{\perp} + b_{||} \widehat{\boldsymbol{B}}_0$
- Where:

•
$$\widehat{B}_0 = \sin \alpha \ \widehat{y} + \cos \alpha \ \widehat{z}$$

• $\widehat{\perp} = \cos \alpha \ \widehat{y} - \sin \alpha \ \widehat{z}$

MHD Equations

• Ideal, $\beta = 0$, linear

$$\frac{\partial \boldsymbol{u}}{\partial t} = \frac{1}{\rho} \boldsymbol{j} \times \boldsymbol{B}_{0}$$
$$\frac{\partial \boldsymbol{b}}{\partial t} = \boldsymbol{\nabla} \times (\boldsymbol{u} \times \boldsymbol{B}_{0})$$
$$\nabla_{\perp} = \cos \alpha \ \frac{\partial}{\partial y} - \sin \alpha \ \frac{\partial}{\partial z}$$
$$\nabla_{\parallel} = \sin \alpha \ \frac{\partial}{\partial y} + \cos \alpha \ \frac{\partial}{\partial z}$$

$$\frac{\partial u_x}{\partial t} = \frac{B_0}{\mu \rho} \left[\nabla_{||} b_x - \frac{\partial b_{||}}{\partial x} \right]$$
$$\frac{\partial u_\perp}{\partial t} = \frac{B_0}{\mu \rho} \left[\nabla_{||} b_\perp - \nabla_\perp b_{||} \right]$$
$$\frac{\partial b_x}{\partial t} = B_0 \nabla_{||} u_x$$
$$\frac{\partial b_\perp}{\partial t} = B_0 \nabla_{||} u_\perp$$
$$\frac{\partial b_{||}}{\partial t} = -B_0 \left[\frac{\partial u_x}{\partial x} + \nabla_\perp u_\perp \right]$$

Normal mode

• We seek normal mode solutions:

$$u_x, u_\perp, b_x, b_\perp, b_\parallel \propto \exp[i(k_y y + \omega t)]$$

• Where:

$$|k_{y}L_{z}| \leq O(1) \in \mathbb{R}$$
$$\omega = \omega_{r} + i\omega_{i}$$
$$\omega_{r} = \frac{\pi v_{A0}}{L_{z}} \cos \alpha$$
$$\frac{\omega_{i}}{\omega_{r}} = \epsilon \ll 1$$

Numerical schemes

- Solve ideal, $\beta = 0$, linear MHD equations
- Leapfrog algorithm:
 - Based on Rickard and Wright (1994)
 - Finite-difference
 - Staggered grid
 - Second order accurate
- Runge-Kutta algorithm:
 - Solves ODE which we derive later

Structure

- Introduction
- RA in a perpendicular field
- Uniform domain
- Normal mode solution
- Solution with BCs
- Summary

Boundary conditions

- Driver at $x = x_{max}$, given by:
 - $b_{\parallel} = \sin(k_y y \omega_r t) \cos(k_z z) \exp(\omega_i t)$
- Periodic in *y*
- $\boldsymbol{u} = 0$ at $z = z_{min}$ and z_{max}
- $u_x = 0$ at $x = x_{min}$
- Solve using leapfrog code

 $u_{\perp 0}(t) = \max(u_{\perp}) \exp(\omega_i t)$

Structure

- Introduction
- RA in a perpendicular field
- Uniform domain
- Normal mode solution
- Solution with BCs
- Summary

Why study waves in a uniform domain?

- $\rho = \rho_0$
- Provides simplest demonstration of the boundary layers forming
- Can calculate exact analytic solution
- Test code

Normal mode solution

• Assume:

$$u_x, u_\perp, b_x, b_\perp, b_{\parallel} \propto \exp[i(k_x x + k_y y + k_z z + \omega t)]$$

• Where:

$$k_x, k_y, \omega \in \mathbb{R} \text{ and } k_z \in \mathbb{C}$$

Dispersion relation

• Convert PDE's into an algebraic equation:

$$\Rightarrow \left[\omega^{2} + v_{A}^{2} \nabla_{\parallel}^{2} \right] \left[\omega^{2} - v_{A}^{2} \left(k_{x}^{2} + k_{y}^{2} + k_{z}^{2} \right) \right] = 0$$
Alfvén waves
Fast waves

• Where:
$$\nabla_{\parallel} = i(k_y \sin \alpha + k_z \cos \alpha)$$

• Assume:
$$v_A^2 (k_x^2 + k_y^2) > \omega^2$$

• Hence:

$$k_{z1} = \frac{\omega}{v_A \cos \alpha} - k_y \tan \alpha$$
$$k_{z2} = -\frac{\omega}{v_A \cos \alpha} - k_y \tan \alpha$$

$$k_{z3} = i \frac{\sqrt{v_A^2 (k_x^2 + k_y^2) - \omega^2}}{v_A}$$
$$k_{z4} = -i \frac{\sqrt{v_A^2 (k_x^2 + k_y^2) - \omega^2}}{v_A}$$

Example: Semi-infinite domain

- $z \in [0,\infty)$
- Impose solid BC's at z = 0, i.e. $u \Big|_{z=0} = 0$
- Open BC's for $z \to \infty$
- Solution remains finite $\forall z$

Calculate full solution

- Solution remains finite $\forall z \implies$ coefficient of k_{z4} term = 0
- Boundary conditions $\Rightarrow u_x = u_\perp = 0$ at z = 0
- Specify incident wave amplitude

 \Rightarrow 3 equations 3 unknowns \Rightarrow Exact solution Large k_x approximation $u_{r}(z) = O(k_{r}^{-1})$ $u_{\perp}(z) = 2i I \sin(k_z^* z) \exp(-ik_v \tan \alpha z) + O(k_x^{-1})$ $b_{x}(z) = -2iB_{0}\frac{l}{v_{A}}\sin\alpha\exp(-k_{x}z) + O(k_{x}^{-1})$ $b_{\parallel}(z) = B_0 \frac{l}{v_A} \sin 2\alpha \exp(-k_x z) + O(k_x^{-1})$ $b_{\perp}(z) = 2B_0 \frac{i}{v_A} \left[\cos(k_z^* z) \exp(-ik_y \tan \alpha z) - \sin^2 \alpha \exp(-k_x z) \right] + O(k_x^{-1})$ Alfvén wave Evanescent fast wave

Where: *I* = incident wave amplitude, $k_z^* = \omega/(v_A cos \alpha)$

Large k_x approximation vs. full solution

 $\alpha = 0.000 \pi$

Why do boundary layers form at z = 0?

$$\frac{\partial b_z}{\partial t} = \hat{\mathbf{z}} \cdot \nabla \times (\mathbf{u} \times \mathbf{B}_0) = 0$$

$$\Rightarrow b_z = \cos(\alpha) b_{\parallel} - \sin(\alpha) b_{\perp} = 0$$

$$\Rightarrow b_{\parallel} = \tan(\alpha) b_{\perp}$$
Curl in the z-direction

 $v_A^2(k_x^2 + k_y^2) > \omega^2 \Longrightarrow$ Evanescent fast waves

Uniform domain: Summary

- If the field is oblique \Rightarrow boundary layers form
- Analytic and numerical solutions agree \Rightarrow leapfrog code is working

Structure

- Introduction
- RA in a perpendicular field
- Uniform domain
- Normal mode solution
- Solution with BCs
- Summary

Normal mode solution

• Assume:

• Where:

$$u_x, u_\perp, b_x, b_\perp, b_{||} \propto \exp[i(k_y y + k_z z + \omega t)]$$

$$k_y \in \mathbb{R} \text{ and } \omega, k_z \in \mathbb{C}$$

 $\omega = \omega_r + i\omega_i$
 $\frac{\omega_i}{\omega_r} = \epsilon \ll 1$

Second-order ODE

• This gives:

• Where

$$\mathcal{L} = B_0^2 \nabla_{\parallel}^2 + \mu \rho(x) \omega^2$$

Frobenius solution

• Where x_{res} is gives the resonant location

Singular / resonant location (x_{res})

• Given by

$$\mathcal{L} = B_0^2 \nabla_{\parallel}^2 + \mu \rho(x_{res}) \omega^2 = 0$$

- In general $x_{res} \in \mathbb{C}$
- If $\omega \in \mathbb{R}$ and $k_z \in \mathbb{R} \Longrightarrow x_{res} \in \mathbb{R}$
- \Longrightarrow Letting $\omega \in \mathbb{C} \sim$ introducing viscosity

Classifying the solutions for $|x| = O(\epsilon L_z)$

Type I (Singular)	Type II (Regular)	Type III (Laplace)
$ x_{res} \le O(\epsilon L_z)$	$ x_{res} \ge O(L_z)$	$ x_{res} \ge O(L_z)$
Singular component dominates	Regular component dominates	Regular component dominates
k_z given by $\mathcal{L}(x_{res}) = 0$	$ k_z L_z \le O(1)$	$ k_z L_z \ge O(1/\epsilon)$
$u_{\perp}(x) \sim \frac{1}{x - x_{res}}$	$u_{\perp}(x) \sim 1 + Cx$	$u_{\perp} \sim \exp(ik_x x)$

Why Laplace's equation for $|k_z L_z| \ge O(1/\epsilon)$?

- Consider $\rho = \rho_0$
- Solve dispersion relation for k_x

$$\begin{bmatrix} \omega^2 + v_A^2 \nabla_{\parallel}^2 \end{bmatrix} \begin{bmatrix} \omega^2 - v_A^2 \left(k_x^2 + k_y^2 + k_z^2\right) \end{bmatrix} = 0$$
$$\implies k_x^2 = \frac{\omega^2}{v_A^2} - k_y^2 - k_z^2$$
$$\implies k_x^2 \approx -k_z^2$$

$$\Rightarrow \frac{\partial^2 u_{\perp}}{\partial x^2} + \frac{\partial^2 u_{\perp}}{\partial z^2} = 0$$

Normal mode: Summary

• General solution is given by:

$$u_{\perp} = \exp[i(k_y y + \omega t)] \sum_{n=1}^{\infty} u_{\perp n}(x) \exp(ik_{zn}z)$$

 ∞

- The terms categorize into:
 - Type I (Singular)
 - Type II (Regular)
 - Type III (Laplace)

Structure

- Introduction
- RA in a perpendicular field
- Uniform domain
- Normal mode solution
- Solution with BCs
- Summary

Boundary conditions (BCs)

- $u_x = 0$ at $x = x_{min}$
- $u_x = g(y, z, t)$ at $x = x_{max}$
- $\boldsymbol{u} = 0$ at $z = z_{min}$
- Solutions remain finite $\forall z$

Periodic solution

• Driver:

$$g(y, z, t) = \exp[i(k_y y + \omega t)] \sum_{n = -\infty}^{\infty} C_n \exp(ik_{zn} z)$$

- \Rightarrow Full solution = superposition of normal modes
- If the *m*'th term satisfies $\mathcal{L}(ix_i) = 0$ then it will dominate
- No BL's

Semi-infinite solution

- $z \in [0, \infty)$
- Solutions remain finite ∀ z
- $u_{\perp} = 0$
- $u_x = -u_{x1}$ (Periodic solution)

Proposed solution

- Solution is unique
- Note that:
 - For Type III (Laplace) solutions: $u_x = O(u_\perp)$
 - For Type I (singular) solution: $u_{\chi} = O(\epsilon \ln \epsilon u_{\perp})$
- \Rightarrow Create asymptotic expansion:

$$u_{x} = w_{x}(x, y, z, t) + O(\epsilon \ln \epsilon)$$
$$u_{\perp} = w_{\perp}(x, y, z, t) + p(x, y, z, t) + O(\epsilon \ln \epsilon)$$

Proposed solution

 $w_{x}(x,0) = -u_{x1} \text{ (Periodic solution)}$ $u_{x} = w_{x}(x,z) + 0(\epsilon \ln \epsilon)$ $u_{\perp} = w_{\perp}(x,z) + p(x,z) + 0(\epsilon \ln \epsilon)$ $p(x,0) = -w_{\perp}(x,0)$

Type III (Laplace solution)

$$\frac{\partial^2 w_x}{\partial x^2} + \frac{\partial^2 w_x}{\partial z^2} = 0$$

• Postulate a solution of the form

$$w_x(x,z) = \sum_{n=-\infty}^{\infty} C_n \exp(ik_n x - |k_n|z)$$

- Satisfying
 - $w_x(x,0) = -u_{x1}(x,0)$ (Periodic solution)
 - $w_{\chi}(\pm l_{\chi}, z) = 0$
 - w_{χ} finite $\forall z$

Type I solution (singular solution)

• Postulate solution of the form

$$p(x,z) = \sum_{j=1}^{\infty} \frac{a_j}{x+b_j} \exp(ik_j z)$$

 \sim

- Where $a_j, b_j \in \mathbb{C}$
- Satisfying

$$p(x,0) = -w_{\perp}(x,0)$$

• Need to express

$$w_{\perp}(x,0) = -\sum_{j=1}^{\infty} \frac{a_j}{x+b_j}$$

How to write
$$w_{\perp}(x,0) = \sum_{j=1}^{\infty} \frac{a_j}{x+b_j}$$
?

• Where:

$$P(x) = Degree N - 1 polynomial$$

 $Q(x) = Degree N polynomial$

What is the Padé approximant?

A portion of the Padé table for the exponential function e^z

n m	0	1	2	3
0	$\frac{1}{1}$	$rac{1}{1-z}$	$\frac{1}{1-z+\frac{1}{2}z^2}$	$\frac{1}{1-z+\frac{1}{2}z^2-\frac{1}{6}z^3}$
1	$rac{1+z}{1}$	$\frac{1+\frac{1}{2}z}{1-\frac{1}{2}z}$	$\frac{1+\frac{1}{3}z}{1-\frac{2}{3}z+\frac{1}{6}z^2}$	$\frac{1+\frac{1}{4}z}{1-\frac{3}{4}z+\frac{1}{4}z^2-\frac{1}{24}z^3}$
2	$\frac{1+z+\frac{1}{2}z^2}{1}$	$\frac{1+\frac{2}{3}z+\frac{1}{6}z^2}{1-\frac{1}{3}z}$	$rac{1+rac{1}{2}z+rac{1}{12}z^2}{1-rac{1}{2}z+rac{1}{12}z^2}$	$rac{1+rac{2}{5}z+rac{1}{20}z^2}{1-rac{3}{5}z+rac{3}{20}z^2-rac{1}{60}z^3}$
3	$\frac{1+z+\frac{1}{2}z^2+\frac{1}{6}z^3}{1}$	$\frac{1+\frac{3}{4}z+\frac{1}{4}z^2+\frac{1}{24}z^3}{1-\frac{1}{4}z}$	$\frac{1+\frac{3}{5}z+\frac{3}{20}z^2+\frac{1}{60}z^3}{1-\frac{2}{5}z+\frac{1}{20}z^2}$	$\frac{1+\frac{1}{2}z+\frac{1}{10}z^2+\frac{1}{120}z^3}{1-\frac{1}{2}z+\frac{1}{10}z^2-\frac{1}{120}z^3}$
4	$\frac{1+z+\frac{1}{2}z^2+\frac{1}{6}z^3+\frac{1}{24}z^4}{1}$	$\frac{1+\frac{4}{5}z+\frac{3}{10}z^2+\frac{1}{15}z^3+\frac{1}{120}z^4}{1-\frac{1}{5}z}$	$\frac{1+\frac{2}{3}z+\frac{1}{5}z^2+\frac{1}{30}z^3+\frac{1}{360}z^4}{1-\frac{1}{3}z+\frac{1}{30}z^2}$	$\frac{1+\frac{4}{7}z+\frac{1}{7}z^2+\frac{2}{105}z^3+\frac{1}{840}z^4}{1-\frac{3}{7}z+\frac{1}{14}z^2-\frac{1}{210}z^3}$

Courtesy: wikipedia.org/Padé_table

Numerical confirmation

• We choose

$$u_{x1}(x,0) = \ln(x - ix_i)$$

- Where u_{x1} = periodic solution
- We claim we know the z-dependence ⇒ we can calculate corresponding x-dependence numerically
- Check analytic x-dependence and numerical x-dependence agree
- Check BCs are satisfied

$\omega_i / \omega_r = 1.35 e-02$	$\alpha = 0.79$
$x_i / L_z = 1.35e-02$	$N_p = 25$
$L_y L_z = 3.14$	$N_{h} = 64$
y = t = 0	

Energy of the boundary layer (BL)

• Energy given by: $E_{BL} \sim \int_0^\infty b_{\parallel}^2 dz \sim \int_0^\infty k_x \exp(-k_x z) dz = 1$ • $\Rightarrow E_{BL} \approx \text{constant}$ • BL's are evanescent BL's have a limited effect on the rate of absorption

Summary and conclusions

- Oblique field + solid BCs \implies evanescent BLs
- BLs do not stop resonance absorption
- BLs have a limited effect on the rate of absorption

Future work

- Calculate solution for a finite domain
- Confirm results using leapfrog code
- Study in a cylindrical geometry

References

- Giagkiozis, Ioannis, Marcel Goossens, Gary Verth, Viktor Fedun, and Tom Van Doorsselaere. "Resonant absorption of axisymmetric modes in twisted magnetic flux tubes." *The Astrophysical Journal* 823, no. 2 (2016): 71.
- Rickard, Graham J., and Andrew N. Wright. "Alfvén resonance excitation and fast wave propagation in magnetospheric waveguides." *Journal of Geophysical Research: Space Physics* 99, no. A7 (1994): 13455-13464.
- Ruderman, M. S., and B. Roberts. "The damping of coronal loop oscillations." *The Astrophysical Journal* 577, no. 1 (2002): 475.