Nonlinear Alfvén Waves Near
 an X-Type Null Point

Student: Alex Prokopyszyn
Supervisors: Prof Hood and Prof De Moortel

What l've been doing these past 9 months

$$
\begin{aligned}
& B_{x}=\sin x e^{-y} \\
& B_{y}=1-\cos x e^{-y}
\end{aligned}
$$

$$
\begin{aligned}
& B_{x}=x \\
& B_{y}=-y
\end{aligned}
$$

Structure

- Introduction

-1D Alfvén pulse
- Verwichte et al. (1999)
- Thurgood and McLaughlin (2013)
-1D Standing Wave
- Terradas and Ofman (2004)
-2D X-point field

- McLaughlin (2016)

Null points

- Where $\mathbf{B}=0$
- In 2D a separatrix is a field line which goes directly into a null point.
- Nulls are abundant in the corona

PFSS Model with $l_{\max }=641$ (Williams, 2018) Nulls in photosphere: 693 (below 0.5Mm) Nulls in chromosphere: 2529 ($0.5 \mathrm{Mm}<\mathrm{R}<2 \mathrm{Mm}$) Nulls in corona: 1718 (above 2Mm)

What is a nonlinear wave?

A nonlinear wave is a wave which induces disturbances which are proportional to its amplitude squared or higher

Nonlinear Wave

$$
\begin{gathered}
\underline{t=0} \\
\boldsymbol{B}=\boldsymbol{B}_{0}+\epsilon \boldsymbol{B}_{1} \\
\rho=\rho_{0}+\epsilon \rho_{1} \\
p=p_{0}+\epsilon p_{1} \\
\begin{array}{c}
\text { Static Equilibrium } \\
\text { Value }
\end{array} \begin{array}{c}
\text { Initial Linear } \\
\text { Wave }
\end{array}
\end{gathered}
$$

Nonlinear Magnetic Pressure Force from an Alfven Wave

Second Order Momentum Equation for an Alfvén Wave

Conditions: Initially:

- $\beta=0$
- $\partial / \partial z=0$
- $\nabla \times \boldsymbol{B}_{0}=0$
- $B_{z 0}=0$
- $\boldsymbol{B}_{1}=\left(0,0, B_{z 1}\right)$

$$
\boldsymbol{B}=\boldsymbol{B}_{0}+\epsilon \boldsymbol{B}_{1}+\epsilon^{2} \boldsymbol{B}_{2}+O\left(\epsilon^{3}\right)
$$

$$
\rho=\rho_{0}+\epsilon \rho_{1}+\epsilon^{2} \rho_{2}+O\left(\epsilon^{3}\right)
$$

- $v_{1}=\left(0,0, v_{z 1}\right)$,

$$
\boldsymbol{v}=\epsilon \boldsymbol{v}_{1}+\epsilon^{2} \boldsymbol{v}_{2}+O\left(\epsilon^{3}\right)
$$

- $\rho_{1}=\rho_{2}=B_{2}=v_{2}=0$

$$
\frac{\partial v}{\partial t}=\frac{\epsilon}{\mu \rho_{0}} \underbrace{\left(\boldsymbol{B}_{0} \cdot \nabla\right) B_{z 1} \hat{z}}-\underbrace{\epsilon^{2}\left[\nabla B_{z 1}^{2}\right.}+\left(\nabla \times \boldsymbol{B}_{2}\right) \times \boldsymbol{B}_{0}]+O\left(\epsilon^{3}\right)
$$

Linear Tension Force Pressure Force

Numerical Experiment: 1D Alfvén Pulse

- Uniform $\rho_{0}, p_{0}, \boldsymbol{B}_{0}=B_{0} \widehat{\boldsymbol{x}}$
- $v_{0}=\left(0,0, v_{z 0}\right)$
- $\beta_{0}=0.02$
- Solid boundary conditions
- Ideal MHD

$$
\frac{v_{Z 0}}{v_{A 0}}=\left\{\begin{array}{l}
0.01 \cos ^{2} \frac{\pi x}{L_{0}}, \quad\left|\frac{x}{L_{0}}\right| \leq 0.5 \\
0, \quad \text { otherwise }
\end{array}\right.
$$

Numerical Experiment: 1D Alfvén Pulse

Pondermotive wing

$$
\begin{gathered}
B_{z}=f(\theta)=\epsilon f(x \pm t) \\
\frac{\partial}{\partial x}=\frac{d}{d \theta} \quad \frac{\partial}{\partial t}= \pm \frac{d}{d \theta} \\
\frac{d v_{\|}}{d \theta} \approx \pm \frac{1}{2} \epsilon^{2} \frac{\partial B_{z}^{2}}{\partial \theta} \\
v_{\| \|} \approx \pm \frac{1}{2} \epsilon^{2} f^{2}(x-t)+\mathrm{C}
\end{gathered}
$$

Cross-Pondermotive Force

$$
\begin{gathered}
B_{Z}=\epsilon[f(x+t)+f(x-t)] \\
\frac{d v_{\|}}{d t}=-\frac{1}{2} \epsilon^{2} \frac{\partial}{\partial x}\left[f^{2}(x+t)+f^{2}(x-t)+\right. \\
\underbrace{\{f(x-t) f(x+t)\}}]
\end{gathered}
$$

Cross-Pondermotive Force

1D Pulse: Summary

- Pondermotive wing:
${ }^{-} v_{\|} \propto v_{Z}^{2}$
- Slow waves:
- Generated by cross-pondermotive force (Verwichte et. al. 1999)

Numerical Experiment: 1D Standing Alfvén Wave

- Uniform $\rho_{0}, p_{0}, \boldsymbol{B}_{0}=B_{0} \widehat{\boldsymbol{x}}$
- $v_{0}=0$
- Driver at $x=x_{\text {min }}$
$-\frac{v_{Z}}{v_{A 0}}=0.01 \sin \left(\frac{\pi t}{t_{0}}\right)$
- Solid boundary conditions
- $\beta_{0}=0.02$
- Ideal MHD

Numerical Experiment: 1D Standing Alfvén Wave

Numerical Experiment: 1D Standing Alfvén Wave

Density Enhancement

If: $\quad v_{z} \sim \epsilon \sin x \sin t$

Then: $\quad \rho \sim \rho_{0}+\frac{1}{4} \epsilon^{2} t^{2} \cos 2 x \quad(\beta=0)$

$$
\rho \sim \rho_{0}+\frac{1}{4} \frac{\epsilon^{2}}{c_{s}^{2}} \sin ^{2} c_{s} t \cos 2 x \quad(\beta \neq 0)
$$

Beating Effect

Why does temperature increase / decrease occur?

- Gas evolves adiabatically

$$
\begin{gathered}
p_{1}=v_{s}^{2} \rho_{1} \\
\frac{T_{1}}{T_{0}} \approx(\gamma-1) \frac{\rho_{1}}{\rho_{0}}
\end{gathered}
$$

- If isothermal:
- Negligible effect on pressure enhancement
- Density enhancement increases by a factor γ

1D Standing Wave: Summary

- Density increase/decrease occurs at antinodes/nodes of v_{z}
- Increasing β decreases amplitude in density
-Thermal conduction acts to increase the amplitude in density

2D X-point Field: Setup

- Uniform ρ_{0}, p_{0}
- $\boldsymbol{B}_{0}=\frac{B_{n o r m}}{L_{0}}(x,-y)$
- $v_{0}=0$
- $\rho_{0}=1.67 \times 10^{-12} \mathrm{kgm}^{-3}$
- $B_{\text {norm }}=2.5 \times 10^{-3} \mathrm{~T}$
- $L_{0}=1 \mathrm{Mm}$
- $T_{0} \approx 9 \times 10^{5} \mathrm{~K}$

2D X-point Field: Plasma Beta

2D X-point Field: Boundary Conditions

- Driver at $y=y_{\min }$ with spatial profile illustrated
- Time profile: $\sin \left(\frac{\pi t}{\ln (4) t_{0}}\right)$
- Solid boundary conditions

2D X-point Field: Thermal conduction

- Implemented by solving:
$\rho \frac{\partial \epsilon}{\partial t}=\nabla \cdot\left(\left(\kappa_{0} T^{\frac{5}{2}} \frac{\boldsymbol{B}}{B^{2}+b_{\min }^{2}} \cdot \nabla T\right) \boldsymbol{B}\right)+\nabla \cdot\left(\kappa_{0} T^{5 / 2} \frac{b_{\min }}{B^{2}+b_{\min }^{2}} \nabla T\right)$
- $b_{\min }=0$ recovers Braginskii thermal conduction:

$$
\rho \frac{\partial \epsilon}{\partial t}=\nabla \cdot\left(\kappa_{0} T^{5 / 2}(\widehat{\boldsymbol{B}} \cdot \nabla T) \widehat{\boldsymbol{B}}\right)
$$

- $b_{\text {min }}=10^{-6} B_{\text {norm }}$

2D X-point Field: Setup

$\bullet \eta \neq 0$

- $\tau_{\text {cond }_{0}} / T_{D} \approx 1.6$,
- $t_{\text {end }} \approx 15 T_{D}$
- No viscosity

Numerical Experiment: 2D X-point Field

Numerical Experiment: 2D X-point Field

For $\beta \ll 1$:
$v_{\|} \rightarrow$ Slow waves and pondermotive wings
$v_{\perp} \rightarrow$ Fast waves

Numerical Experiment: 2D X-point Field

Time Period

$$
\begin{gathered}
T_{n}=\frac{2}{n} \tau_{A 0} \ln \left(\frac{\hat{x}_{\max } \hat{y}_{\text {max }}}{\hat{A}}\right) \\
\text { For } \hat{A}=\hat{x} \hat{y}
\end{gathered}
$$

Why do the resonating field lines further from the origin have more energy?

$$
\begin{aligned}
& \left|v_{A}\right| \propto R \\
\Rightarrow & \frac{\delta v_{A}}{v_{A 0}} \propto \frac{1}{R} \\
\Rightarrow & \delta T_{n} \propto \frac{1}{R}
\end{aligned}
$$

\Rightarrow Beating Time Period $\propto R$

Current Sheet Formation

 $v_{z}(0, y, t)$

How is magnetic energy converted to heat?

$\sqrt{j x^{2}+j y^{2}+j x^{2}}(m A)$ at $t=11.24 \mathrm{~s}$

$v_{\|}$along $x=0(\mathrm{~km} / \mathrm{s})$

Time $=17.04 \mathrm{~s}$

McLaughlin 2009 and Santamaria et. al. 2017 have qualitatively similar results

Santamaria Results

Longitudinal Acoustic Energy ~ $v_{\text {II }}$

Pressure

Transverse Magnetic Energy $\sim v_{\perp}$

Pressure

Transv, Emog.

z-Energy $\left(E_{z}\right)$ Leakage

Summary

- Alfven waves generate pondermotive wings, slow waves and fast waves
- Standing Alfven waves generate standing density and pressure waves with half the wavelength
- Standing Alfven waves on an x-point field are damped by phase mixing
- Complex MHD coupling at occurs as MHD waves cross the $\beta=1$ circle around a null point

Future Work

- Study MHD waves in more realistic configurations
- Study the behaviour of MHD waves as they cross the $\beta=1$ circle around a null point

$$
\begin{aligned}
& B_{x}=\sin x e^{-y} \\
& B_{y}=1-\cos x e^{-y}
\end{aligned}
$$

References

McLaughlin, J. 2016. Behaviour of magnetoacoustic waves in the neighbourhood of a two-dimensional null point: Initially cylindrically symmetric perturbations. Journal of Astrophysics and Astronomy, 37(1):2.
McLaughlin, J. A., I. De Moortel, A. W. Hood, and C. S. Brady 2009. Nonlinear fast magnetoacoustic wave propagation in the neighbourhood of a 2 d magnetic x-point: oscillatory reconnection. Astronomy \& Astrophysics, 493(1):227-240.
Santamaria, I., E. Khomenko, M. Collados, and A. de Vicente 2017. Highfrequency waves in the corona due to null points. Astronomy \& Astrophysics, 602:A43.
Terradas, J. and L. Ofman 2004. Loop density enhancement by nonlinear magnetohydrodynamic waves. The Astrophysical Journal, 610(1):523.
Thurgood, J. and J. McLaughlin 2013. On ponderomotive effects induced by alfven waves in inhomogeneous 2.5 d mhd plasmas. Solar Physics, 288(1):205222.

Tomczyk, S., S. McIntosh, S. Keil, P. Judge, T. Schad, D. Seeley, and J. Edmondson 2007. Alfvén waves in the solar corona. Science, 317(5842):11921196.

Verwichte, E., V. Nakariakov, and A. Longbottom 1999. On the evolution of a nonlinear alfvén pulse. Journal of plasma physics, 62(2):219-232.

