Nonlinear Alfvén Waves Near an X-Type Null Point

Student: Alex Prokopyszyn

Supervisors: Prof Hood and Prof De Moortel

What I've been doing these past 9 months

$$B_x = \sin x \ e^{-y}$$
$$B_y = 1 - \cos x \ e^{-y}$$

$$B_x = x$$
$$B_y = -y$$

Structure

Introduction

1D Alfvén pulse

- Verwichte et al. (1999)
- Thurgood and McLaughlin (2013)
- 1D Standing Wave
 - Terradas and Ofman (2004)
- 2D X-point field
 - McLaughlin (2016)

Null points

- Where $\mathbf{B} = 0$
- In 2D a separatrix is a field line which goes directly into a null point.
- Nulls are abundant in the corona

PFSS Model with $l_{max} = 641$ (Williams, 2018)

Nulls in photosphere: 693 (below 0.5Mm) Nulls in chromosphere: 2529 (0.5Mm < R < 2Mm) Nulls in corona: 1718 (above 2Mm)

What is a nonlinear wave?

A nonlinear wave is a wave which induces disturbances which are proportional to its amplitude squared or higher

Nonlinear Wave

Disturbances

Nonlinear Magnetic Pressure Force from an Alfven Wave

Second Order Momentum Equation for an Alfvén Wave

Conditions:

• $\beta = 0$

• $\partial/\partial z = 0$

- $\nabla \times \boldsymbol{B}_0 = 0$
- $B_{z0} = 0$

Initially:

$$\boldsymbol{B}_1 = (0,0,B_{Z1})$$

•
$$\boldsymbol{v}_1 = (0, 0, v_{z1})$$
,

•
$$\rho_1 = \rho_2 = B_2 = v_2 = 0$$

$$B = B_0 + \epsilon B_1 + \epsilon^2 B_2 + O(\epsilon^3)$$

$$\rho = \rho_0 + \epsilon \rho_1 + \epsilon^2 \rho_2 + O(\epsilon^3)$$

$$v = \epsilon v_1 + \epsilon^2 v_2 + O(\epsilon^3)$$

Numerical Experiment: 1D Alfvén Pulse

- Uniform ρ_0 , p_0 , $\pmb{B}_0=B_0\widehat{\pmb{x}}$
- $\bullet \boldsymbol{v}_0 = (0, 0, v_{z0})$
- • $\beta_0 = 0.02$
- Solid boundary conditions
- Ideal MHD

$$\frac{v_{z0}}{v_{A0}} = \begin{cases} 0.01 \cos^2 \frac{\pi x}{L_0}, & \left|\frac{x}{L_0}\right| \le 0.5\\ 0, & \text{otherwise} \end{cases}$$

Numerical Experiment: 1D Alfvén Pulse

Pondermotive wing

$$B_{z} = f(\theta) = \epsilon f(x \pm t)$$

$$\frac{\partial}{\partial x} = \frac{d}{d\theta} \quad \frac{\partial}{\partial t} = \pm \frac{d}{d\theta}$$

$$\frac{dv_{||}}{d\theta} \approx \pm \frac{1}{2} \epsilon^{2} \frac{\partial B_{z}^{2}}{\partial \theta}$$

$$v_{||} \approx \pm \frac{1}{2} \epsilon^{2} f^{2}(x - t) + \theta$$

Cross-Pondermotive Force

$$B_z = \epsilon [f(x+t) + f(x-t)]$$

$$\frac{dv_{\parallel}}{dt} = -\frac{1}{2}\epsilon^2 \frac{\partial}{\partial x} \left[f^2(x+t) + f^2(x-t) + \frac{f^2(x-t)}{\sqrt{2}} + \frac{f^2(x-t)f(x+t)}{\sqrt{2}} \right]$$

Cross-Pondermotive Force

1D Pulse: Summary

• Pondermotive wing: • $v_{||} \propto v_z^2$

• Slow waves:

 Generated by cross-pondermotive force (Verwichte et. al. 1999)

Numerical Experiment: 1D Standing Alfvén Wave

- Uniform ho_0 , p_0 , $oldsymbol{B}_0=B_0\widehat{oldsymbol{x}}$
- $\bullet \boldsymbol{v}_0 = 0$
- Driver at $x = x_{min}$ • $\frac{v_z}{v_{A0}} = 0.01 \sin\left(\frac{\pi t}{t_0}\right)$
- Solid boundary conditions
- • $\beta_0 = 0.02$
- Ideal MHD

Numerical Experiment: 1D Standing Alfvén Wave

Numerical Experiment: 1D Standing Alfvén Wave

Density Enhancement

If:
$$v_z \sim \epsilon \sin x \sin t$$

Then: $\rho \sim \rho_0 + \frac{1}{4} \epsilon^2 t^2 \cos 2x$ $(\beta = 0)$
 $\rho \sim \rho_0 + \frac{1}{4} \frac{\epsilon^2}{c_s^2} \sin^2 c_s t \cos 2x$ $(\beta \neq 0)$

Beating Effect

Why does temperature increase / decrease occur?

Gas evolves adiabatically

$$p_1 = v_s^2 \rho_1$$
$$\frac{T_1}{T_0} \approx (\gamma - 1) \frac{\rho_1}{\rho_0}$$

- If isothermal:
 - Negligible effect on pressure enhancement
 - Density enhancement increases by a factor γ

1D Standing Wave: Summary

- Density increase/decrease occurs at antinodes/nodes of $v_{\rm Z}$
- Increasing β decreases amplitude in density
- Thermal conduction acts to increase the amplitude in density

2D X-point Field: Setup

2D X-point Field: Boundary Conditions

- Driver at $y = y_{min}$ with spatial profile illustrated
- Time profile: $\sin\left(\frac{\pi t}{\ln(4)t_0}\right)$
- Solid boundary conditions

2D X-point Field: Thermal conduction

- Implemented by solving: $\rho \frac{\partial \epsilon}{\partial t} = \nabla \cdot \left(\left(\kappa_0 T^{\frac{5}{2}} \frac{B}{B^2 + b_{min}^2} \cdot \nabla T \right) B \right) + \nabla \cdot \left(\kappa_0 T^{5/2} \frac{b_{min}}{B^2 + b_{min}^2} \nabla T \right)$
- $b_{min} = 0$ recovers Braginskii thermal conduction: $\rho \frac{\partial \epsilon}{\partial t} = \nabla \cdot (\kappa_0 T^{5/2} (\widehat{B} \cdot \nabla T) \widehat{B})$ • $b_{min} = 10^{-6} B_{norm}$

2D X-point Field: Setup

• $\eta \neq 0$ • $\tau_{cond_0}/T_D \approx 1.6$, • $t_{end} \approx 15T_D$ •No viscosity

Numerical Experiment: 2D X-point Field

$$\begin{cases} v_A^{norm} \approx 1.73 \times 10^6 \text{ms}^{-1} \\ 84.7 \text{kms}^{-1} \approx 0.05 v_A^{norm} \end{cases}$$

Driver Amplitude = $0.01 v_A^{norm} \approx 16.94 \text{km/s}$

Numerical Experiment: 2D X-point Field

For $\beta \ll 1$: $v_{\parallel} \rightarrow$ Slow waves and pondermotive wings $v_{\perp} \rightarrow$ Fast waves

Numerical Experiment: 2D X-point Field

Why do the resonating field lines further from the origin have more energy?

 $|v_A| \propto R$

$$\Longrightarrow \frac{\delta v_A}{v_{A0}} \propto \frac{1}{R}$$

$$\Rightarrow \delta T_n \propto \frac{1}{R}$$

 \implies Beating Time Period $\propto R$

 $\sqrt{jx^2 + jy^2 + jx^2}$ (mA) at t = 11.24s 25 -2 20 15 \hat{y}_0 10 5 -2 0 -2 0 $\widehat{\chi}$ 2

 $v_{||}$ along x = 0 (km/s) Time = 17.04s2.8 2 0 **−0.**85Ŀ (Mm)

McLaughlin 2009 and Santamaria et. al. 2017 have qualitatively similar results

Santamaria Results

z-Energy (E_z) Leakage

Summary

- Alfven waves generate pondermotive wings, slow waves and fast waves
- Standing Alfven waves generate standing density and pressure waves with half the wavelength
- Standing Alfven waves on an x-point field are damped by phase mixing
- Complex MHD coupling at occurs as MHD waves cross the $\beta=1$ circle around a null point

Future Work

- Study MHD waves in more realistic configurations
- Study the behaviour of MHD waves as they cross the $\beta = 1$ circle around a null point

References

- McLaughlin, J. 2016. Behaviour of magnetoacoustic waves in the neighbourhood of a two-dimensional null point: Initially cylindrically symmetric perturbations. Journal of Astrophysics and Astronomy, 37(1):2.
- McLaughlin, J. A., I. De Moortel, A. W. Hood, and C. S. Brady 2009. Nonlinear fast magnetoacoustic wave propagation in the neighbourhood of a 2d magnetic x-point: oscillatory reconnection. *Astronomy & Astrophysics*, 493(1):227–240.
- Santamaria, I., E. Khomenko, M. Collados, and A. de Vicente 2017. High-frequency waves in the corona due to null points. *Astronomy & Astrophysics*, 602:A43.
- Terradas, J. and L. Ofman 2004. Loop density enhancement by nonlinear magnetohydrodynamic waves. *The Astrophysical Journal*, 610(1):523.
- Thurgood, J. and J. McLaughlin 2013. On ponderomotive effects induced by alfven waves in inhomogeneous 2.5 d mhd plasmas. *Solar Physics*, 288(1):205–222.
- Tomczyk, S., S. McIntosh, S. Keil, P. Judge, T. Schad, D. Seeley, and J. Edmondson 2007. Alfvén waves in the solar corona. *Science*, 317(5842):1192– 1196.
- Verwichte, E., V. Nakariakov, and A. Longbottom 1999. On the evolution of a nonlinear alfvén pulse. *Journal of plasma physics*, 62(2):219–232.