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What I’ve been doing these past 9 months

𝐵𝑥 = sin 𝑥 𝑒−𝑦

𝐵𝑦 = 1 − cos 𝑥 𝑒−𝑦
𝐵𝑥 = 𝑥
𝐵𝑦 = −𝑦



Structure

• Introduction

•1D Alfvén pulse
▪ Verwichte et al. (1999) 

▪ Thurgood and McLaughlin (2013)

•1D Standing Wave
▪ Terradas and Ofman (2004)

•2D X-point field
▪ McLaughlin (2016)

Structure



Null points
• Where 𝐁 = 0

• In 2D a separatrix is a field line which 
goes directly into a null point.

• Nulls are abundant in the corona

PFSS Model with 𝑙𝑚𝑎𝑥 = 641 (Williams, 2018)

Nulls in photosphere: 693 (below 0.5Mm)
Nulls in chromosphere: 2529 (0.5Mm < R < 2Mm)
Nulls in corona: 1718 (above 2Mm)



What is a nonlinear wave?

A nonlinear wave is a wave which induces disturbances which are 
proportional to its amplitude squared or higher

𝑡 = 0 𝑡 > 0

Linear Wave:

Nonlinear Wave:



Nonlinear Wave

𝑡 = 0

𝑩 = 𝑩0 + 𝜖𝑩1

𝜌 = 𝜌0 + 𝜖𝜌1

𝑝 = 𝑝0 + 𝜖 𝑝1

𝑡 > 0

𝑩 = 𝑩0 + 𝜖𝑩1 + 𝜖2𝑩2 + 𝑂(𝜖3)

𝜌 = 𝜌0 + 𝜖𝜌1 + 𝜖2𝜌2 + 𝑂(𝜖3)

𝑝 = 𝑝0 + 𝜖 𝑝1 + 𝜖2𝑝2 + 𝑂(𝜖3)

Static Equilibrium 
Value

Initial Linear 
Wave

Induced 
Nonlinear 

Disturbances



Nonlinear Magnetic Pressure Force from an Alfven Wave

𝑥

𝑧

𝐵𝑥 = 1
𝐵𝑦 = 0

𝐵𝑧 = 𝜖𝑒−𝑥
2

-𝛻𝐵𝑧
2 = 4𝜖2𝑥𝑒−2𝑥

2
ෝ𝒙

Pressure force

Nonlinear 
Magnetic Pressure 

Force

𝑡 = 0



Second Order Momentum Equation for an Alfvén Wave

𝜕𝒗

𝜕𝑡
=

𝜖

𝜇𝜌0
𝑩0 ∙ 𝛻 𝐵𝑧1 Ƹ𝑧 − 𝜖2[𝛻𝐵𝑧1

2 + (𝛻 × 𝑩2) × 𝑩0] +𝑂(𝜖
3)

Linear Tension 
Force

Nonlinear 
Pressure Force

Conditions:

• 𝛽 = 0

• Τ𝜕 𝜕𝑧 = 0

• 𝛻 × 𝑩0 = 0

• 𝐵𝑧0 = 0

𝑩 = 𝑩0 + 𝜖𝑩1 + 𝜖2𝑩2 + 𝑂(𝜖3)
𝜌 = 𝜌0 + 𝜖𝜌1 + 𝜖2𝜌2 + 𝑂 𝜖3

𝒗 = 𝜖𝒗1 + 𝜖2𝒗2 + 𝑂(𝜖3)

Initially:

• 𝑩1 = 0,0, 𝐵𝑧1

• 𝒗1 = 0,0, 𝑣𝑧1 ,

• 𝜌1 = 𝜌2 = 𝑩2 = 𝒗𝟐= 0



Numerical Experiment: 1D Alfvén Pulse

•Uniform 𝜌0, 𝑝0, 𝑩0 = 𝐵0ෝ𝒙

•𝒗0 = (0,0, 𝑣𝑧0)

•𝛽0 = 0.02

• Solid boundary conditions

• Ideal MHD

𝑣𝑧0
𝑣𝐴0

=
0.01 cos2

𝜋𝑥

𝐿0
,

𝑥

𝐿0
≤ 0.5

0, otherwise



Numerical Experiment: 1D Alfvén Pulse

ൗ𝑥 𝐿0

𝑣𝑍
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𝑣𝐴0

10−2

−10−2

5 × 10−5

−5 × 10−5
−5 −55 5

ൗ𝑥 𝐿0



Pondermotive wing

𝑑𝑣||

𝑑𝜃
≈ ±

1

2
𝜖2

𝜕𝐵𝑧
2

𝜕𝜃

𝐵𝑧 = 𝑓 𝜃 = 𝜖𝑓(𝑥 ± 𝑡)

𝜕

𝜕𝑥
=

𝑑

𝑑𝜃

𝜕

𝜕𝑡
= ±

𝑑

𝑑𝜃

𝑣|| ≈ ±
1

2
𝜖2𝑓2 𝑥 − 𝑡 + C



Cross-Pondermotive Force

𝑑𝑣||

𝑑𝑡
= −

1

2
𝜖2

𝜕

𝜕𝑥
[𝑓2 𝑥 + 𝑡 + 𝑓2 𝑥 − 𝑡 + 

𝐵𝑧 = 𝜖[𝑓 𝑥 + 𝑡 + 𝑓 𝑥 − 𝑡 ]

{𝑓 𝑥 − 𝑡 𝑓 𝑥 + 𝑡 }]

Cross-Pondermotive Force



1D Pulse: Summary

•Pondermotive wing:
▪𝑣|| ∝ 𝑣𝑧

2

• Slow waves:
▪Generated by cross-pondermotive force (Verwichte et. al. 

1999)



Numerical Experiment: 1D Standing Alfvén Wave

•Uniform 𝜌0, 𝑝0, 𝑩0 = 𝐵0ෝ𝒙

•𝒗0 = 0

•Driver at 𝑥 = 𝑥𝑚𝑖𝑛

▪
𝑣𝑧

𝑣𝐴0
= 0.01sin

𝜋𝑡

𝑡0

• Solid boundary conditions

•𝛽0 = 0.02

• Ideal  MHD



Numerical Experiment: 1D Standing Alfvén Wave

𝑥
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Numerical Experiment: 1D Standing Alfvén Wave
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Density Enhancement

If:             𝑣𝑧 ∼ 𝜖 sin 𝑥 sin 𝑡

𝜌 ∼ 𝜌0 +
1

4
𝜖2𝑡2 cos 2𝑥

𝜌 ∼ 𝜌0 +
1

4

𝜖2

𝑐𝑠
2 sin

2 𝑐𝑠𝑡 cos 2𝑥

Then:

(𝛽 ≠ 0)

(𝛽 = 0)



Beating Effect



Why does temperature increase / decrease 
occur?
• Gas evolves adiabatically

𝑝1 = 𝑣𝑠
2𝜌1

𝑇1
𝑇0

≈ (𝛾 − 1)
𝜌1
𝜌0

• If isothermal:
▪Negligible effect on pressure enhancement
▪Density enhancement increases by a factor 𝛾



1D Standing Wave: Summary

•Density increase/decrease occurs at antinodes/nodes 
of 𝑣𝑧
• Increasing β decreases amplitude in density

• Thermal conduction acts to increase the amplitude in 
density



•Uniform 𝜌0, 𝑝0

•𝑩0 =
𝐵𝑛𝑜𝑟𝑚

𝐿0
(𝑥, −𝑦)

•𝒗0 = 0

•𝜌0 = 1.67 × 10−12kgm−3

•𝐵𝑛𝑜𝑟𝑚 = 2.5 × 10−3T

•𝐿0 = 1Mm

•𝑇0 ≈ 9 × 105K

2D X-point Field: Setup 

𝑥

𝑦

−2Mm

−2Mm

2Mm

2Mm



2D X-point Field: Plasma Beta 

Distance from origin - 𝑅 (Mm)

𝛽0(𝑅)

𝛽0 = 1 at 𝑅 = 10−2Mm



2D X-point Field: Boundary Conditions 

• Driver at 𝑦 = 𝑦𝑚𝑖𝑛 with 
spatial profile illustrated

• Time profile: sin
𝜋𝑡

ln(4)𝑡0

• Solid boundary conditions

𝑣𝑧

2Mm−2Mm

𝑥

𝑥 = −1.5Mm 𝑥 = 1.5Mm

𝑣𝑧 = 0.01𝑣𝐴
𝑛𝑜𝑟𝑚



2D X-point Field: Thermal conduction

• Implemented by solving:

𝜌
𝜕𝜖

𝜕𝑡
= 𝛻 ⋅ 𝜅0𝑇

5
2

𝑩

𝐵2 + 𝑏𝑚𝑖𝑛
2 ⋅ 𝛻𝑇 𝑩 + 𝛻 ⋅ 𝜅0𝑇

5/2
𝑏𝑚𝑖𝑛

𝐵2 + 𝑏𝑚𝑖𝑛
2 𝛻𝑇

• 𝑏𝑚𝑖𝑛 = 0 recovers Braginskii thermal conduction:

𝜌
𝜕𝜖

𝜕𝑡
= 𝛻 ⋅ 𝜅0𝑇

5/2 𝑩 ⋅ 𝛻𝑇 𝑩

• 𝑏𝑚𝑖𝑛 = 10−6𝐵𝑛𝑜𝑟𝑚



2D X-point Field: Setup

•𝜂 ≠ 0

• ൗ
𝜏𝑐𝑜𝑛𝑑0

𝑇𝐷 ≈ 1.6,

•𝑡𝑒𝑛𝑑 ≈ 15𝑇𝐷
•No viscosity



Numerical Experiment: 2D X-point Field 

𝑣𝐴
𝑛𝑜𝑟𝑚 ≈ 1.73 × 106ms−1

84.7kms−1 ≈ 0.05𝑣𝐴
𝑛𝑜𝑟𝑚

Driver Amplitude = 0.01𝑣𝐴
𝑛𝑜𝑟𝑚

≈ 16.94km/s



Numerical Experiment: 2D X-point Field 

For 𝛽 ≪ 1:
𝑣|| → Slow waves and pondermotive wings

𝑣⊥ → Fast waves



Numerical Experiment: 2D X-point Field 



Resonance

መ𝐴

Time Period
𝑇𝑛

𝑇𝑛 =
2

𝑛
𝜏𝐴0 ln

ො𝑥𝑚𝑎𝑥 ො𝑦𝑚𝑎𝑥

መ𝐴
For መ𝐴 = ො𝑥 ො𝑦

n = 2



Why do the resonating field lines further from 
the origin have more energy?

⟹
𝛿𝑣𝐴
𝑣𝐴0

∝
1

𝑅

𝑣𝐴 ∝ 𝑅

⟹𝛿𝑇𝑛 ∝
1

𝑅

⟹ Beating Time Period ∝ 𝑅



Current Sheet Formation

−2 20

𝑦 (Mm)

0.01𝑣𝐴
𝑛𝑜𝑟𝑚

−0.01𝑣𝐴
𝑛𝑜𝑟𝑚

0

𝑣𝑧(0, 𝑦, 𝑡)



How is magnetic energy converted to heat?

1
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Phase Mixing Shock Heating

Magnetic Diffusion



𝑗𝑥2 + 𝑗𝑦2 + 𝑗𝑥2 𝑚𝐴 at 𝑡 = 11.24s
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𝑣|| along 𝑥 = 0 (km/s)

−2 20

𝑦 (Mm)

2.8

−0.85

0

2

1

McLaughlin 2009 and 
Santamaria et. al. 2017 
have qualitatively 
similar results



Santamaria Results

Longitudinal Acoustic 
Energy ∼ 𝑣||

Pressure
Transverse Magnetic 

Energy ∼ 𝑣⊥



z-Energy (𝐸𝑧) Leakage

𝐸𝑧 = න
𝐴

𝐵𝑧
2

2𝜇0
+
1

2
𝜌𝑣𝑧

2𝑑𝑆

Where 𝐴 is the top half of the domain



Summary

• Alfven waves generate pondermotive wings, slow waves and fast 
waves

• Standing Alfven waves generate standing density and pressure waves 
with half the wavelength

• Standing Alfven waves on an x-point field are damped by phase 
mixing 

• Complex MHD coupling at occurs as MHD waves cross the 𝛽 = 1
circle around a null  point



Future Work

𝐵𝑥 = sin 𝑥 𝑒−𝑦

𝐵𝑦 = 1 − cos 𝑥 𝑒−𝑦
• Study MHD waves in more realistic 

configurations
• Study the behaviour of MHD waves 

as they cross the 𝛽 = 1 circle 
around a null point
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